The E3 ubiquitin ligase Itch controls the protein stability of p63.

نویسندگان

  • Mario Rossi
  • Rami I Aqeilan
  • Michael Neale
  • Eleonora Candi
  • Paolo Salomoni
  • Richard A Knight
  • Carlo M Croce
  • Gerry Melino
چکیده

p63, a member of the p53 family of transcription factors, plays an important role in epithelial development, regulating both cell cycle and apoptosis. Even though p63 activity is regulated mainly at the posttranslational level, the control of p63 protein stability is far from being fully understood. Here, we show that the Hect (homologous to the E6-associated protein C terminus)-containing Nedd4-like ubiquitin protein ligase Itch binds, ubiquitylates, and promotes the degradation of p63. The physical interaction occurs at the border between the PY and the SAM (sterile alpha motif) domains; a single Y504F mutation significantly affects p63 degradation. Itch and p63 are coexpressed in the epidermis and in primary keratinocytes where Itch controls the p63 protein steady-state level. Accordingly, p63 protein levels are significantly increased in Itch knockout keratinocytes. These data suggest that Itch has a fundamental role in the mechanism that controls endogenous p63 protein levels and therefore contributes to regulation of p63 in physiological conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recognition mechanism of p63 by the E3 ligase Itch: novel strategy in the study and inhibition of this interaction.

The HECT-containing E3 ubiquitin ligase Itch mediates the degradation of several proteins, including p63 and p73, involved in cell specification and fate. Itch contains four WW domains, which are essential for recognition on the target substrate, which contains a short proline-rich sequence. Several signaling complexes containing these domains have been associated with human diseases such as mu...

متن کامل

Ubiquitin E3 ligase Itch negatively regulates osteoblast function by promoting proteasome degradation of osteogenic proteins

OBJECTIVES Ubiquitin E3 ligase-mediated protein degradation regulates osteoblast function. Itch, an E3 ligase, affects numerous cell functions by regulating ubiquitination and proteasomal degradation of related proteins. However, the Itch-related cellular and molecular mechanisms by which osteoblast differentiation and function are elevated during bone fracture repair are as yet unknown. METH...

متن کامل

Regulation of p63 Protein Stability via Ubiquitin-Proteasome Pathway

The p53-related p63 gene encodes multiple protein isoforms, which are involved in a variety of biological activities. p63 protein stability is mainly regulated by the ubiquitin-dependent proteasomal degradation pathway. Several ubiquitin E3 ligases have been identified and some protein kinases as well as other kinds of proteins are involved in regulation of p63 protein stability. These regulato...

متن کامل

HECT-Type Ubiquitin E3 Ligase ITCH Interacts With Thioredoxin-Interacting Protein and Ameliorates Reactive Oxygen Species-Induced Cardiotoxicity.

BACKGROUND The homologous to the E6-AP carboxyl terminus (HECT)-type ubiquitin E3 ligase ITCH is an enzyme that plays a pivotal role in posttranslational modification by ubiquitin proteasomal protein degradation. Thioredoxin-interacting protein (TXNIP) is a negative regulator of the thioredoxin system and an endogenous reactive oxygen species scavenger. In the present study, we focused on the f...

متن کامل

Recognition and ubiquitination of Notch by Itch, a hect-type E3 ubiquitin ligase.

Genetic studies identified Itch, which is a homologous to the E6-associated protein carboxyl terminus (Hect) domain-containing E3 ubiquitin-protein ligase that is disrupted in non-agouti lethal mice or Itchy mice. Itch-deficiency results in abnormal immune responses and constant itching in the skin. Here, Itch was shown to associate with Notch, a protein involved in cell fate decision in many m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 103 34  شماره 

صفحات  -

تاریخ انتشار 2006